Preliminary communication

A new and efficient synthesis of β -L-rhamnopyranosides

TOMMY IVERSEN and DAVID R. BUNDLE

Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

(Received July 3rd, 1980; accepted for publication, July 19th, 1980)

A systematic approach to the synthesis of β -L-rhamnopyranosides has not been reported, and, as this structural unit occurs in bacterial antigens^{1,2}, an effective synthesis of oligosaccharides containing residues thereof is of practical significance. We report here the synthesis of β -L-rhamnopyranosides in good yield, utilizing the readily accessible α -L-rhamnopyranosyl bromide (3).

The problem of synthesis of 1,2-cis-hexosides possessing the manno configuration has received attention by several groups³⁻⁷. The approach has, in general, been similar, i.e., selection of a nonparticipating, protecting group for O-2, in conjunction with activation at C-1. Currently, the most practical exemplification of these principles is the procedure of Garegg and co-workers^{5,7}, which takes advantage of the fact that acetalation of D-mannose under kinetic control gives rise to pyranose 2,3:4,6-acetals⁸.

In contrast to D-mannose, L-rhamnose undergoes acetalation with 1-ethoxy-cyclohexene, followed by acetylation, to yield a furanose derivative, namely, 1,5-di-O-acetyl-2,3-O-cyclohexylidene- α -L-rhamnofuranose. In order to obtain a pyranose derivative, methyl α -L-rhamnopyranoside (1) was chosen as the starting material. A solution of 1 in acetonitrile containing a catalytic amount of p-toluenesulfonic acid was treated with 1-ethoxycyclohexene (2 mol. equiv.), and the crude product was benzoylated, to afford 72% of crystalline methyl 4-O-benzoyl-2,3-O-cyclohexylidene- α -L-rhamnopyranoside (2), m.p. 95.5-97° (from Skellysolve B), $[\alpha]_D^{20}$ +2.2° (CHCl₃). Reaction of 2 in chloroform solution with zinc bromide (1 mol. equiv.) and dibromomethyl methyl ether (2 mol. equiv.)^{9,10} for 45 min at 50°, filtration, and evaporation, afforded crude, syrupy rhamnosyl bromide 3, $[\alpha]_D^{20}$ -26.1° (CHCl₃). Judged by its ¹³C-N.M.R. spectrum the product was >90% pure, and it was used immediately, without purification.

Treatment of 3 with methanol containing triethylamine gave a 69% yield of crystalline methyl 4-O-benzoyl-2,3-O-cyclohexylidene-β-L-rhamnopyranoside (4), m.p. 149.5–151.5° (from ethanol). Reactions of 3 with three selectively protected pyranosides (8–10), chosen for their moderate to low reactivity, were performed under standard Koenigs—Knorr conditions. A solution of bromide 3 (4 mmol) in dichloromethane (5 mL) was added dropwise to a stirred suspension of silver carbonate (8 mmol), molecular sieve 4A (10 g), and the aglycon (1 mmol) in dichloromethane

$$_{\text{BzO}}^{\text{H}_{3}\text{C}}$$
 $_{\text{BzO}}^{\text{H}_{3}\text{C}}$ $_{\text{BzO}}^{\text{H}_{3}$

(10 mL). After 2 h, the reactions were processed by filtration followed by chromatography.

Both rhamnose disaccharides, namely, methyl 4-O-(4-O-benzoyl-2,3-O-cyclo-hexylidene-β-L-rhamnopyranosyl)-2,3-O-isopropylidene-α-L-rhamnopyranoside (5) and 8-(methoxycarbonyl)octyl 2,4-di-O-benzoyl-3-O-(4-O-benzoyl-2,3-O-cyclohexylidene-β-L-rhamnopyranosyl)-α-L-rhamnopyranoside (6), were obtained with high stereoselectivity in yields of 87 and 62%, respectively. With the particularly unreactive 11 aglycon 10, the stereoselectivity was lowered, and both anomers were obtained, namely, methyl 4-O-(4-O-benzoyl-2,3-O-cyclohexylidene-α-L-rhamnopyranosyl)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (11) in 33% yield, and methyl 4-O-(4-O-benzoyl-2,3-di-O-cyclohexylidene-β-L-rhamnopyranosyl)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (7) in 23% yield. That the stereoselectivity is lowered in glycosidations with unreactive aglycons has also been observed 1 in the synthesis of β-D-mannopyranosides.

Removal of protecting groups was accomplished in the usual ways, by transesterification of benzoic esters, hydrogenolysis of benzyl ethers, and acid hydrolysis of acetals by trifluoroacetic acid⁷. The physical constants and anomeric-shift data for the fully protected and de-protected glycosides are listed in Table I.

The readily accessible bromide 3 has been shown to be an effective intermediate for the synthesis of β -L-rhamnopyranosides. In this regard, its use for sequential synthesis^{12,13} of the oligosaccharides of bacterial O-antigens is receiving further attention

TABLE I
SOME PHYSICAL PROPERTIES OF THE COMPOUNDS LISTED

Compound	$[\alpha]_D^{20}$ (degrees)	H-1	H'-1 ^{a,b}	C-1	C'-1 a,b
4	+79.8 ^c	_	_	100.0	_ d
5	+19.0 ^c	_		98.9	98.2^{d}
6	÷65.3°	_	_	97.9	95.5 ^d
11	-12.6 ^c	_	_	96.8	104.9 ^d
7	+52.8 ^c	_	_	99.9	104.6 ^d
Methyl β-L-rhamnopyranoside	+95.2 ^{e,f}	4.52		102.2	_g
Methyl 4- <i>O</i> -β-L-rhamnopyranosyl- α-L-rhamnopyranoside	-12.1 ^e	4.71	4.71	101.6	101.8 ^g
8-(Methoxycarbonyl)octyl 3- <i>O</i> -β-L-rhamnopyranoside	+5.0 ^e	4.78	4.72	101.0	98.5 ^g
Methyl 4-O-α-L-rhamnopyranosyl- β-D-glucopyranoside	-54.3 ^e	4.91	4.37	102.0	104.3 ^g
Methyl 4-O-β-L-rhamnopyranosyl- β-D-glucopyranoside	+31.5 ^e	4.86	4.37	101.8	104.4 <i>g</i>

^a Primes refer to the anomeric proton of the aglyconic saccharide. ^b For ¹H-n.m.r. spectra, chemical shifts were measured at 90°, and are referenced to sodium trimethylsilyl propionate. ¹³C- n.m.r. spectra are referenced to external Me₄Si for solutions in D₂O, and to internal Me₄Si for solutions in CDCl₃. ^c In CHCl₃. ^d In CDCl₃. ^e In H₂O. ^f Lit. [α]_D +95.4°; m.p. 140.5–141.5° (from ethyl acetate) [lit. ¹⁴ m.p. 138–140°]. ^g In D₂O.

REFERENCES

- 1 K. Jann and O. Westphal, in M. Sela (Ed.), *The Antigens*, Vol. 3, Academic Press, New York, 1975, pp. 1-125.
- O. Lüderitz, O. Westphal, A. M. Staub, and H. Nikaido, in G. Weinbaum, S. Kadis, and
 S. J. Ajl (Eds.), Microbial Toxins, Vol. 4, Academic Press, New York, 1971, pp. 145-233.
- 3 P. A. J. Gorin and A. S. Perlin, Can. J. Chem., 39 (1961) 2474-2485.
- 4 H. Paulsen and O. Lockhoff, Tetrahedron Lett., (1978) 4027-4030.
- 5 P. J. Garegg and T. Iversen, Carbohydr. Res., 70 (1979) C13-C14.
- 6 V. K. Srivastava and C. Schuerch, Carbohydr. Res., 79 (1980) C13-C16.
- 7 P. J. Caregg, T. Iversen, and R. Johansson, Acta Chem. Scand. Ser. B, (1980), in press.
- 8 J. Gelas and D. Horton, Carbohydr. Res., 67 (1978) 371-387.
- 9 H. Gross and U. Karsch, J. Prakt. Chem., 29 (1965) 315-318.
- 10 R. Bognár, I. Farkas Szabó, I. Farkas, and H. Gross, Carbohydr. Res., 5 (1967) 241-243.
- 11 J.-R. Pougry, J.-C. Jacquinet, M Nasser, D. Duchet, M.-L. Milat, and P. Sinaÿ, J. Am. Chem. Soc 99 (1977) 6762-6763.
- 12 S. Josephson and D. R. Bundle, Can. J. Chem., 57 (1979) 3073-3079.
- 13 D. R. Bundle and S. Josephson, Carbohydr. Res., 80 (1980) 75-85.
- 14 E. Fischer, M. Bergmann, and A. Rabe, Ber., 53 (1920) 2362-2388.